Error Estimates and Evaluation of Matrix Functions via the Faber Transform
نویسندگان
چکیده
The need to evaluate expressions of the form f(A) or f(A)b, where f is a nonlinear function, A is a large sparse n × n matrix, and b is an n-vector, arises in many applications. This paper describes how the Faber transform applied to the field of values of A can be used to determine improved error bounds for popular polynomial approximation methods based on the Arnoldi process. Applications of the Faber transform to rational approximation methods and, in particular, to the rational Arnoldi process also are discussed.
منابع مشابه
Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations
A function is said to be bi-univalent on the open unit disk D if both the function and its inverse are univalent in D. Not much is known about the behavior of the classes of bi-univalent functions let alone about their coefficients. In this paper we use the Faber polynomial expansions to find coefficient estimates for four well-known classes of bi-univalent functions which are defined by subord...
متن کاملCoefficient Estimates for a General Subclass of m-fold Symmetric Bi-univalent Functions by Using Faber Polynomials
In the present paper, we introduce a new subclass H∑m (λ,β)of the m-fold symmetric bi-univalent functions. Also, we find the estimates of the Taylor-Maclaurin initial coefficients |am+1| , |a2m+1| and general coefficients |amk+1| (k ≥ 2) for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملNumerical solution of system of linear integral equations via improvement of block-pulse functions
In this article, a numerical method based on improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...
متن کاملStudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2009